Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
BMC Pharmacol Toxicol ; 25(1): 25, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38444002

RESUMO

BACKGROUND: It has become evident in the field of oncology that the outcome of medical treatment is influenced by the combined effect exerted on both cancer- and immune cells. Therefore, we evaluated potential immunological effects of 46 standard anticancer agents and 22 commonly administered concomitant non-cancer drugs. METHODS: We utilized a miniaturized in vitro model system comprised of fluorescently labeled human colon and lung cancer cell lines grown as monocultures and co-cultured with activated peripheral blood mononuclear cells (PBMCs). The Bliss Independence Model was then applied to detect antagonism and synergy between the drugs and activated immune cells. RESULTS: Among the standard anticancer agents, tyrosine kinase inhibitors (TKIs) stood out as the top inducers of both antagonism and synergy. Ruxolitinib and dasatinib emerged as the most notably antagonistic substances, exhibiting the lowest Bliss scores, whereas sorafenib was shown to synergize with activated PBMCs. Most concomitant drugs did not induce neither antagonism nor synergy. However, the statins mevastatin and simvastatin were uniquely shown to synergize with activated PBMC at all tested drug concentrations in the colon cancer model. CONCLUSION: We utilized a miniaturized tumor-immune model to enable time and cost-effective evaluation of a broad panel of drugs in an immuno-oncology setting in vitro. Using this approach, immunomodulatory effects exerted by TKIs and statins were identified.


Assuntos
Antineoplásicos , Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Pulmonares , Humanos , Leucócitos Mononucleares , Antineoplásicos/farmacologia , Dasatinibe/farmacologia
2.
BMC Cancer ; 23(1): 164, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36803614

RESUMO

BACKGROUND: High-throughput screening (HTS) of small molecule drug libraries has greatly facilitated the discovery of new cancer drugs. However, most phenotypic screening platforms used in the field of oncology are based solely on cancer cell populations and do not allow for the identification of immunomodulatory agents. METHODS: We developed a phenotypic screening platform based on a miniaturized co-culture system with human colorectal cancer- and immune cells, providing a model that recapitulates part of the tumor immune microenvironment (TIME) complexity while simultaneously being compatible with a simple image-based readout. Using this platform, we screened 1,280 small molecule drugs, all approved by the Food and Drug Administration (FDA), and identified statins as enhancers of immune cell-induced cancer cell death. RESULTS: The lipophilic statin pitavastatin had the most potent anti-cancer effect. Further analysis demonstrated that pitavastatin treatment induced a pro-inflammatory cytokine profile as well as an overall pro-inflammatory gene expression profile in our tumor-immune model. CONCLUSION: Our study provides an in vitro phenotypic screening approach for the identification of immunomodulatory agents and thus addresses a critical gap in the field of immuno-oncology. Our pilot screen identified statins, a drug family gaining increasing interest as repurposing candidates for cancer treatment, as enhancers of immune cell-induced cancer cell death. We speculate that the clinical benefits described for cancer patients receiving statins are not simply caused by a direct effect on the cancer cells but rather are dependent on the combined effect exerted on both cancer and immune cells.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Agentes de Imunomodulação , Detecção Precoce de Câncer , Ensaios de Triagem em Larga Escala , Bibliotecas de Moléculas Pequenas/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/genética , Morte Celular , Microambiente Tumoral
3.
Sci Rep ; 13(1): 748, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639512

RESUMO

The tumor micro-environment (TME) of hepatocellular carcinoma (HCC) consists out of cirrhotic liver tissue and is characterized by an extensive deposition of extracellular matrix proteins (ECM). The evolution from a reversible fibrotic state to end-stage of liver disease, namely cirrhosis, is characterized by an increased deposition of ECM, as well as changes in the exact ECM composition, which both contribute to an increased liver stiffness and can alter tumor phenotype. The goal of this study was to assess how changes in matrix composition and stiffness influence tumor behavior. HCC-cell lines were grown in a biomimetic hydrogel model resembling the stiffness and composition of a fibrotic or cirrhotic liver. When HCC-cells were grown in a matrix resembling a cirrhotic liver, they increased proliferation and protein content, compared to those grown in a fibrotic environment. Tumour nodules spontaneously formed outside the gels, which appeared earlier in cirrhotic conditions and were significantly larger compared to those found outside fibrotic gels. These tumor nodules had an increased expression of markers related to epithelial-to-mesenchymal transition (EMT), when comparing cirrhotic to fibrotic gels. HCC-cells grown in cirrhotic gels were also more resistant to doxorubicin compared with those grown in fibrotic gels or in 2D. Therefore, altering ECM composition affects tumor behavior, for instance by increasing pro-metastatic potential, inducing EMT and reducing response to chemotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Biomimética , Matriz Extracelular/metabolismo , Cirrose Hepática/patologia , Proteínas da Matriz Extracelular/metabolismo , Microambiente Tumoral
4.
Anticancer Drugs ; 34(1): 92-102, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36066384

RESUMO

Cancer patients often suffer from cancer symptoms, treatment complications and concomitant diseases and are, therefore, often treated with several drugs in addition to anticancer drugs. Whether such drugs, here denoted as 'concomitant drugs', have anticancer effects or interact at the tumor cell level with the anticancer drugs is not very well known. The cytotoxic effects of nine concomitant drugs and their interactions with five anti-cancer drugs commonly used for the treatment of colorectal cancer were screened over broad ranges of drug concentrations in vitro in the human colon cancer cell line HCT116wt. Seven additional tyrosine kinase inhibitors were included to further evaluate key findings as were primary cultures of tumor cells from patients with colorectal cancer. Cytotoxic effects were evaluated using the fluorometric microculture cytotoxicity assay (FMCA) and interaction analysis was based on Bliss independent interaction analysis. Simvastatin and loperamide, included here as an opioid agonists, were found to have cytotoxic effects on their own at reasonably low concentrations whereas betamethasone, enalapril, ibuprofen, metformin, metoclopramide, metoprolol and paracetamol were inactive also at very high concentrations. Drug interactions ranged from antagonistic to synergistic over the concentrations tested with a more homogenous pattern of synergy between simvastatin and protein kinase inhibitors in HCT116wt cells. Commonly used concomitant drugs are mostly neither expected to have anticancer effects nor to interact significantly with anticancer drugs frequently used for the treatment of colorectal cancer.


Assuntos
Antineoplásicos , Neoplasias Colorretais , Humanos , Células Tumorais Cultivadas , Antineoplásicos/farmacologia , Interações Medicamentosas , Sinvastatina
5.
Sci Rep ; 12(1): 11960, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831404

RESUMO

Understanding the immunological effects of chemotherapy is of great importance, especially now that we have entered an era where ever-increasing pre-clinical and clinical efforts are put into combining chemotherapy and immunotherapy to combat cancer. Single-cell RNA sequencing (scRNA-seq) has proved to be a powerful technique with a broad range of applications, studies evaluating drug effects in co-cultures of tumor and immune cells are however scarce. We treated a co-culture comprised of human colorectal cancer (CRC) cells and peripheral blood mononuclear cells (PBMCs) with the nucleoside analogue trifluridine (FTD) and used scRNA-seq to analyze posttreatment gene expression profiles in thousands of individual cancer and immune cells concurrently. ScRNA-seq recapitulated major mechanisms of action previously described for FTD and provided new insight into possible treatment-induced effects on T-cell mediated antitumor responses.


Assuntos
Neoplasias Colorretais , Demência Frontotemporal , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Demência Frontotemporal/tratamento farmacológico , Humanos , Leucócitos Mononucleares/metabolismo , Pirrolidinas/farmacologia , Análise de Célula Única , Timina/farmacologia , Timina/uso terapêutico , Trifluridina/farmacologia , Trifluridina/uso terapêutico
6.
Sci Rep ; 12(1): 8943, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624293

RESUMO

Quiescent cancer cells in malignant tumors can withstand cell-cycle active treatment and cause cancer spread and recurrence. Three-dimensional (3D) cancer cell models have led to the identification of oxidative phosphorylation (OXPHOS) as a context-dependent vulnerability. The limited treatment options for advanced hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) metastatic to the liver include the multikinase inhibitors sorafenib and regorafenib. Off-target effects of sorafenib and regorafenib are related to OXPHOS inhibition; however the importance of this feature to the effect on tumor cells has not been investigated in 3D models. We began by assessing global transcriptional responses in monolayer cell cultures, then moved on to multicellular tumor spheroids (MCTS) and tumoroids generated from a CRC patient. Cells were treated with chemotherapeutics, kinase inhibitors, and the OXPHOS inhibitors. Cells grown in 3D cultures were sensitive to the OXPHOS inhibitor nitazoxanide, sorafenib, and regorafenib and resistant to other multikinase inhibitors and chemotherapeutic drugs. Furthermore, nitazoxanide and sorafenib reduced viability, regrowth potential and inhibited mitochondrial membrane potential in an additive manner at clinically relevant concentrations. This study demonstrates that the OXPHOS inhibition caused by sorafenib and regorafenib parallels 3D activity and can be further investigated for new combination strategies.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Colorretais , Neoplasias Hepáticas , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Neoplasias Hepáticas/patologia , Mitocôndrias/metabolismo , Nitrocompostos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Tiazóis
7.
Nat Commun ; 13(1): 2236, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35469026

RESUMO

There is ample support for developmental regulation of glioblastoma stem cells. To examine how cell lineage controls glioblastoma stem cell function, we present a cross-species epigenome analysis of mouse and human glioblastoma stem cells. We analyze and compare the chromatin-accessibility landscape of nine mouse glioblastoma stem cell cultures of three defined origins and 60 patient-derived glioblastoma stem cell cultures by assay for transposase-accessible chromatin using sequencing. This separates the mouse cultures according to cell of origin and identifies three human glioblastoma stem cell clusters that show overlapping characteristics with each of the mouse groups, and a distribution along an axis of proneural to mesenchymal phenotypes. The epigenetic-based human glioblastoma stem cell clusters display distinct functional properties and can separate patient survival. Cross-species analyses reveals conserved epigenetic regulation of mouse and human glioblastoma stem cells. We conclude that epigenetic control of glioblastoma stem cells primarily is dictated by developmental origin which impacts clinically relevant glioblastoma stem cell properties and patient survival.


Assuntos
Glioblastoma , Linhagem da Célula/genética , Cromatina/genética , Epigênese Genética , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas
8.
Oncol Lett ; 23(4): 123, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35261637

RESUMO

Nitazoxanide is a Food and Drug Administration-approved antiprotozoal drug recently demonstrated to be selectively active against quiescent and glucose-deprived tumour cells. This drug also has several characteristics that suggest its potential as a radiosensitizer. The present study aimed to investigate the interaction between nitazoxanide and radiation on human colon cancer cells cultured as monolayers, and to mimic key features of solid tumours in patients, as spheroids, as well as in xenografts in mice. In the present study, colon cancer HCT116 green fluorescent protein (GFP) cells were exposed to nitazoxanide, radiation or their combination. Cell survival was analysed by using total cell kill and clonogenic assays. DNA double-strand breaks were evaluated in the spheroid experiments, and HCT116 GFP cell xenograft tumours in mice were used to investigate the effect of nitazoxanide and radiation in vivo. In the clonogenic assay, nitazoxanide synergistically and selectively sensitized cells grown as spheroids to radiation. However, this was not observed in cells cultured as monolayers, as demonstrated in the total cell kill assays, and much less with the clinically established sensitizer 5-fluorouracil. The sensitizing effect from nitazoxanide was confirmed via spheroid γ-H2A histone family member X staining. Nitazoxanide and radiation alone similarly inhibited the growth of HCT116 GFP cell xenograft tumours in mice with no evidence of synergistic interaction. In conclusion, nitazoxanide selectively targeted quiescent glucose-deprived tumour cells and sensitized these cells to radiation in vitro. Nitazoxanide also inhibited tumour growth in vivo. Thus, nitazoxanide is a candidate for repurposing into an anticancer drug, including its use as a radiosensitizer.

9.
iScience ; 24(11): 103235, 2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34746700

RESUMO

Spheroid cultures of primary human hepatocytes (PHH) are used in studies of hepatic drug metabolism and toxicity. The cultures are maintained under different conditions, with possible confounding results. We performed an in-depth analysis of the influence of various culture conditions to find the optimal conditions for the maintenance of an in vivo like phenotype. The formation, protein expression, and function of PHH spheroids were followed for three weeks in a high-throughput 384-well format. Medium composition affected spheroid histology, global proteome profile, drug metabolism and drug-induced toxicity. No epithelial-mesenchymal transition was observed. Media with fasting glucose and insulin levels gave spheroids with phenotypes closest to normal PHH. The most expensive medium resulted in PHH features most divergent from that of native PHH. Our results provide a protocol for culture of healthy PHH with maintained function - a prerequisite for studies of hepatocyte homeostasis and more reproducible hepatocyte research.

10.
Bone Rep ; 15: 101098, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34150958

RESUMO

Myeloma bone disease is a major complication in multiple myeloma affecting quality of life and survival. It is characterized by increased activity of osteoclasts, bone resorbing cells. Myeloma microenvironment promotes excessive osteoclastogenesis, a process of production of osteoclasts from their precursors, monocytes. The effects of two anti-myeloma drugs, melphalan flufenamide (melflufen) and melphalan, on the activity and proliferation of osteoclasts and their progenitors, monocytes, were assessed in this study. In line with previous research, differentiation of monocytes was associated with increased expression of genes encoding DNA damage repair proteins. Hence monocytes were more sensitive to DNA damage-causing alkylating agents than their differentiated progeny, osteoclasts. In addition, differentiated progeny of monocytes showed increased gene expression of immune checkpoint ligands which may potentially create an immunosuppressive microenvironment. Melflufen was ten-fold more active than melphalan in inhibiting proliferation of osteoclast progenitors. Furthermore, melflufen was also superior to melphalan in inhibition of osteoclastogenesis and bone resorption. These results demonstrate that melflufen may exert beneficial effects in patients with multiple myeloma such as reducing bone resorption and immunosuppressive milieu by inhibiting osteoclastogenesis.

11.
Sci Rep ; 10(1): 13124, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753665

RESUMO

We recently showed that the anti-helminthic compound mebendazole (MBZ) has immunomodulating activity in monocyte/macrophage models and induces ERK signalling. In the present study we investigated whether MBZ induced ERK activation is shared by other tubulin binding agents (TBAs) and if it is observable also in other human cell types. Curated gene signatures for a panel of TBAs in the LINCS Connectivity Map (CMap) database showed a unique strong negative correlation of MBZ with MEK/ERK inhibitors indicating ERK activation also in non-haematological cell lines. L1000 gene expression signatures for MBZ treated THP-1 monocytes also connected negatively to MEK inhibitors. MEK/ERK phosphoprotein activity testing of a number of TBAs showed that only MBZ increased the activity in both THP-1 monocytes and PMA differentiated macrophages. Distal effects on ERK phosphorylation of the substrate P90RSK and release of IL1B followed the same pattern. The effect of MBZ on MEK/ERK phosphorylation was inhibited by RAF/MEK/ERK inhibitors in THP-1 models, CD3/IL2 stimulated PBMCs and a MAPK reporter HEK-293 cell line. MBZ was also shown to increase ERK activity in CD4+ T-cells from lupus patients with known defective ERK signalling. Given these mechanistic features MBZ is suggested suitable for treatment of diseases characterized by defective ERK signalling, notably difficult to treat autoimmune diseases.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mebendazol/farmacologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Tubulina (Proteína)/metabolismo , Células HEK293 , Humanos
12.
Ther Adv Med Oncol ; 12: 1758835920937891, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774473

RESUMO

BACKGROUND: Low survival rates in metastatic high-grade osteosarcoma (HGOS) have remained stagnant for the last three decades. This study aims to investigate the role of aminopeptidase N (ANPEP) in HGOS progression and its targeting with a novel lipophilic peptidase-enhanced cytotoxic compound melphalan flufenamide (melflufen) in HGOS. METHODS: Meta-analysis of publicly available gene expression datasets was performed to determine the impact of ANPEP gene expression on metastasis-free survival of HGOS patients. The efficacy of standard-of-care anti-neoplastic drugs and a lipophilic peptidase-enhanced cytotoxic conjugate melflufen was investigated in patient-derived HGOS ex vivo models and cell lines. The kinetics of apoptosis and necrosis induced by melflufen and doxorubicin were compared. Anti-neoplastic effects of melflufen were investigated in vivo. RESULTS: Elevated ANPEP expression in diagnostic biopsies of HGOS patients was found to significantly reduce metastasis-free survival. In drug sensitivity assays, melflufen has shown an anti-proliferative effect in HGOS ex vivo samples and cell lines, including those resistant to methotrexate, etoposide, doxorubicin, and PARP inhibitors. Further, HGOS cells treated with melflufen displayed a rapid induction of apoptosis and this sensitivity correlated with high expression of ANPEP. In combination treatments, melflufen demonstrated synergy with doxorubicin in killing HGOS cells. Finally, Melflufen displayed anti-tumor growth and anti-metastatic effects in vivo. CONCLUSION: This study may pave the way for use of melflufen as an adjuvant to doxorubicin in improving the therapeutic efficacy for the treatment of metastatic HGOS.

13.
ACS Omega ; 5(28): 17242-17254, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32715210

RESUMO

We have previously identified selective upregulation of the mevalonate pathway genes upon inhibition of oxidative phosphorylation (OXPHOS) in quiescent cancer cells. Using mass spectrometry-based proteomics, we here investigated whether these responses are corroborated on the protein level and whether proteomics could yield unique insights into context-dependent biology. HCT116 colon carcinoma cells were cultured as monolayer cultures, proliferative multicellular tumor spheroids (P-MCTS), or quiescent (Q-MCTS) multicellular tumor spheroids and exposed to OXPHOS inhibitors: nitazoxanide, FCCP, oligomycin, and salinomycin or the HMG-CoA-reductase inhibitor simvastatin at two different doses for 6 and 24 h. Samples were processed using an in-depth bottom-up proteomics workflow resulting in a total of 9286 identified protein groups. Gene set enrichment analysis showed profound differences between the three cell systems and confirmed differential enrichment of hypoxia, OXPHOS, and cell cycle progression-related protein responses in P-MCTS and Q-MCTS. Treatment experiments showed that the observed drug-induced alterations in gene expression of metabolically challenged cells are not translated directly to the protein level, but the results reaffirmed OXPHOS as a selective vulnerability of quiescent cancer cells. This work provides rationale for the use of deep proteome profiling to identify context-dependent treatment responses and encourages further studies investigating metabolic processes that could be co-targeted together with OXPHOS to eradicate quiescent cancer cells.

14.
Oncotarget ; 10(51): 5372-5382, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31523395

RESUMO

There is a need for preclinical models that can enable identification of novel radiosensitizing drugs in clinically relevant high-throughput experiments. We used a new high-throughput compatible total cell kill spheroid assay to study the interaction between drugs and radiation in order to identify compounds with radiosensitizing activity. Experimental drugs were compared to known radiosensitizers and cytotoxic drugs clinically used in combination with radiotherapy. VLX600, a novel iron-chelating inhibitor of oxidative phosphorylation, potentiated the effect of radiation in tumor spheroids in a synergistic manner. This effect was specific to spheroids and not observed in monolayer cell cultures. In conclusion, the total cell kill spheroid assay is a feasible high-throughput method in the search for novel radiosensitizers. VLX600 shows encouraging characteristics for development as a novel radiosensitizer.

15.
BMC Res Notes ; 12(1): 234, 2019 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-31010428

RESUMO

OBJECTIVE: We recently showed that the anti-helminthic compound mebendazole (MBZ) has immunomodulating activity by inducing a M2 to M1 phenotype switch in monocyte/macrophage models. In the present study we investigated the potential role of protein kinases in mediating this effect. RESULTS: MBZ potently binds and inhibits Dual specificity tyrosine-phosphorylation-regulated kinase 1B (DYRK1B) with a Kd and an IC50 of 7 and 360 nM, respectively. The specific DYRK1B inhibitor AZ191 did not mimic the cytokine release profile of MBZ in untreated THP-1 monocytes. However, in THP-1 cells differentiated into macrophages, AZ191 strongly induced a pro-inflammatory cytokine release pattern similar to MBZ and LPS/IFNγ. Furthermore, like MBZ, AZ191 increased the expression of the M1 marker CD80 and decreased the M2 marker CD163 in THP-1 macrophages. In this model, AZ191 also increased phospho-ERK activity although to a lesser extent compared to MBZ. Taken together, the results demonstrate that DYRK1B inhibition could, at least partly, recapitulate immune responses induced by MBZ. Hence, DYRK1B inhibition induced by MBZ may be part of the mechanism of action to switch M2 to M1 macrophages.


Assuntos
Antinematódeos/farmacologia , Macrófagos/efeitos dos fármacos , Mebendazol/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Antinematódeos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/farmacologia , Interleucinas/genética , Interleucinas/imunologia , Lipopolissacarídeos/farmacologia , Macrófagos/citologia , Macrófagos/imunologia , Mebendazol/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/imunologia , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/imunologia , Pirimidinas/farmacologia , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Transdução de Sinais , Células THP-1 , Acetato de Tetradecanoilforbol/farmacologia
16.
Oncotarget ; 9(56): 30805-30813, 2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30112108

RESUMO

Mebendazole (MBZ) was recently shown to induce a tumor suppressive M1 phenotype in THP-1 monocytes and macrophages. In the present study the immune effects of MBZ was further investigated using human peripheral blood mononuclear cells (PBMCs) co-cultured with tumour cells. The Biomap platform was used to screen for biomarkers induced from MBZ exposed co-cultures of T-cell receptor activated PBMCs, HT29 colon cancer cells and either human fibroblasts or human umbilical vein endothelial cells (HUVEC) cells. In these co-culture systems MBZ at 0.3-10 µM induced significant increases in TNFα and IFNγ indicating immune stimulation. PBMC cultures alone were subsequently tested for activation status and only in PBMCs activated by CD3/IL2 stimulation and MBZ, at a clinically achievable concentration, was able to increase PBMC clustering and release of pro-inflammatory IFNγ, TNFα, IL6 and IL1ß cytokines. Moreover, when PBMC cultures were functionally tested for immune cell killing of lung cancer A549NucLightRed cells, MBZ significantly increased tumour cell apoptosis and reduced the number of surviving tumour cells. This effect was dependent on the presence of CD14 monocytes/macrophages in the co-culture. In summary, MBZ potentiated the immune stimulatory and anticancer effects of anti-CD3/IL2 activated PBMCs which could be relevant to explain the anticancer activity of MBZ observed in the clinic.

17.
Exp Cell Res ; 361(2): 308-315, 2017 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29107068

RESUMO

We and others have previously reported a correlation between high phosphodiesterase 3A (PDE3A) expression and selective sensitivity to phosphodiesterase (PDE) inhibitors. This indicates that PDE3A could serve both as a drug target and a biomarker of sensitivity to PDE3 inhibition. In this report, we explored publicly available mRNA gene expression data to identify cell lines with different PDE3A expression. Cell lines with high PDE3A expression showed marked in vitro sensitivity to PDE inhibitors zardaverine and quazinone, when compared with those having low PDE3A expression. Immunofluorescence and immunohistochemical stainings were in agreement with PDE3A mRNA expression, providing suitable alternatives for biomarker analysis of clinical tissue specimens. Moreover, we here demonstrate that tumor cells from patients with ovarian carcinoma show great variability in PDE3A protein expression and that level of PDE3A expression is correlated with sensitivity to PDE inhibition. Finally, we demonstrate that PDE3A is highly expressed in subsets of patient tumor cell samples from different solid cancer diagnoses and expressed at exceptional levels in gastrointestinal stromal tumor (GIST) specimens. Importantly, vulnerability to PDE3 inhibitors has recently been associated with co-expression of PDE3A and Schlafen family member 12 (SLFN12). We here demonstrate that high expression of PDE3A in clinical specimens, at least on the mRNA level, seems to be frequently associated with high SLFN12 expression. In conclusion, PDE3A seems to be both a promising biomarker and drug target for individualized drug treatment of various cancers.


Assuntos
Biomarcadores Tumorais/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Proteínas de Neoplasias/genética , Inibidores de Fosfodiesterase/farmacologia , RNA Mensageiro/genética , Adulto , Idoso , Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Feminino , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/metabolismo , Tumores do Estroma Gastrointestinal/patologia , Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/metabolismo , Especificidade de Órgãos , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Piridazinas/farmacologia , Quinazolinas/farmacologia , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
18.
Leuk Res ; 63: 41-46, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29100024

RESUMO

We previously reported that the anti-malarial drug quinacrine has potential to be repositioned for treatment of acute myeloid leukemia (AML). As a next step towards clinical use, we assessed the efficacy of quinacrine in an AML-PS mouse model and investigated possible synergistic effects when combining quinacrine with nine other antileukemic compounds in two AML cell lines. Furthermore, we explored the in vivo activity of quinacrine in combination with the widely used AML agent cytarabine. The in vivo use of quinacrine (100mg/kg three times per week for two consecutive weeks) significantly suppressed circulating blast cells at days 30/31 and increased the median survival time (MST). The in vitro drug combination analysis yielded promising synergistic interactions when combining quinacrine with cytarabine, azacitidine and geldanamycin. Finally, combining quinacrine with cytarabine in vivo showed a significant decrease in circulating leukemic blast cells and increased MST compared to the effect of either drug used alone, thus supporting the findings from the in vitro combination experiments. Taken together, the repositioning potential of quinacrine for treatment of AML is reinforced by demonstrating significant in vivo activity and promising synergies when quinacrine is combined with different agents, including cytarabine, the hypomethylating agent azacitidine and HSP-90 inhibitor geldanamycin.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Reposicionamento de Medicamentos , Sinergismo Farmacológico , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Citarabina/administração & dosagem , Feminino , Humanos , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Quinacrina/administração & dosagem , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Immunopharmacol Immunotoxicol ; 39(4): 199-210, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28472897

RESUMO

Mebendazole (MBZ), a drug commonly used for helminitic infections, has recently gained substantial attention as a repositioning candidate for cancer treatment. However, the mechanism of action behind its anticancer activity remains unclear. To address this problem, we took advantage of the curated MBZ-induced gene expression signatures in the LINCS Connectivity Map (CMap) database. The analysis revealed strong negative correlation with MEK/ERK1/2 inhibitors. Moreover, several of the most upregulated genes in response to MBZ exposure were related to monocyte/macrophage activation. The MBZ-induced gene expression signature in the promyeloblastic HL-60 cell line was strongly enriched in genes involved in monocyte/macrophage pro-inflammatory (M1) activation. This was subsequently validated using MBZ-treated THP-1 monocytoid cells that demonstrated gene expression, surface markers and cytokine release characteristic of the M1 phenotype. At high concentrations MBZ substantially induced the release of IL-1ß and this was further potentiated by lipopolysaccharide (LPS). At low MBZ concentrations, cotreatment with LPS was required for MBZ-stimulated IL-1ß secretion to occur. Furthermore, we show that the activation of protein kinase C, ERK1/2 and NF-kappaB were required for MBZ-induced IL-1ß release. MBZ-induced IL-1ß release was found to be dependent on NLRP3 inflammasome activation and to involve TLR8 stimulation. Finally, MBZ induced tumor-suppressive effects in a coculture model with differentiated THP-1 macrophages and HT29 colon cancer cells. In summary, we report that MBZ induced a pro-inflammatory (M1) phenotype of monocytoid cells, which may, at least partly, explain MBZ's anticancer activity observed in animal tumor models and in the clinic.


Assuntos
Antineoplásicos/farmacologia , Inflamassomos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Mebendazol/farmacologia , Monócitos/efeitos dos fármacos , Receptor 8 Toll-Like/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Células HEK293 , Células HL-60 , Células HT29 , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...